10 research outputs found

    From Network Structure to Dynamics and Back Again: Relating dynamical stability and connection topology in biological complex systems

    Full text link
    The recent discovery of universal principles underlying many complex networks occurring across a wide range of length scales in the biological world has spurred physicists in trying to understand such features using techniques from statistical physics and non-linear dynamics. In this paper, we look at a few examples of biological networks to see how similar questions can come up in very different contexts. We review some of our recent work that looks at how network structure (e.g., its connection topology) can dictate the nature of its dynamics, and conversely, how dynamical considerations constrain the network structure. We also see how networks occurring in nature can evolve to modular configurations as a result of simultaneously trying to satisfy multiple structural and dynamical constraints. The resulting optimal networks possess hubs and have heterogeneous degree distribution similar to those seen in biological systems.Comment: 15 pages, 6 figures, to appear in Proceedings of "Dynamics On and Of Complex Networks", ECSS'07 Satellite Workshop, Dresden, Oct 1-5, 200

    Punctuated equilibria and 1/f noise in a biological coevolution model with individual-based dynamics

    Full text link
    We present a study by linear stability analysis and large-scale Monte Carlo simulations of a simple model of biological coevolution. Selection is provided through a reproduction probability that contains quenched, random interspecies interactions, while genetic variation is provided through a low mutation rate. Both selection and mutation act on individual organisms. Consistent with some current theories of macroevolutionary dynamics, the model displays intermittent, statistically self-similar behavior with punctuated equilibria. The probability density for the lifetimes of ecological communities is well approximated by a power law with exponent near -2, and the corresponding power spectral densities show 1/f noise (flicker noise) over several decades. The long-lived communities (quasi-steady states) consist of a relatively small number of mutualistically interacting species, and they are surrounded by a ``protection zone'' of closely related genotypes that have a very low probability of invading the resident community. The extent of the protection zone affects the stability of the community in a way analogous to the height of the free-energy barrier surrounding a metastable state in a physical system. Measures of biological diversity are on average stationary with no discernible trends, even over our very long simulation runs of approximately 3.4x10^7 generations.Comment: 20 pages RevTex. Minor revisions consistent with published versio

    Evaluating expert-based habitat suitability information of terrestrial mammals with GPS-tracking data

    No full text
    In our paper "Evaluating expert-based habitat suitability information of terrestrial mammals with GPS-tracking data" (Global Ecology and Biogeography) we use GPS tracking data from 1,498 from 49 different species to evaluate the expert-based habitat suitability data from the International Union for Conservation of Nature (IUCN). Therefore, we used the GPS tracking data to estimate two measures of habitat suitability for each individual animal and habitat type: proportional habitat use (proportion of GPS locations within a habitat type), and selection ratio (habitat use relative to its availability). For each individual we then evaluated whether the GPS-based habitat suitability measures were in agreement with the IUCN data. To that end, we calculated the probability that the ranking of empirical habitat suitability measures was in agreement with IUCN’s classification into suitable, marginal and unsuitable habitat types. Our results showed that IUCN habitat suitability data were in accordance with the GPS data (>95% probability of agreement) for 33 out of 49 species based on proportional habitat use estimates and for 25 out of 49 species based on selection ratios. In addition, 37 and 34 species had a >50% probability of agreement based on proportional habitat use and selection ratios, respectively. These findings indicate that for the majority of species included in this study, it is appropriate to use IUCN habitat suitability data in macroecological studies. Furthermore, our study shows that GPS tracking data can be used to identify and prioritize species and habitat types for re-evaluation of IUCN habitat suitability data. In this dataset we provide the measures of habitat suitability for each individual and each habitat type, calculated using different methods. In addition, we provide data on the body mass and IUCN Red List category of the species, as well as whether the species can be considered a habitat specialist or habitat generalist

    Data of "Evaluating expert-based habitat suitability information of terrestrial mammals with GPS-tracking data"

    No full text
    In our paper "Evaluating expert-based habitat suitability information of terrestrial mammals with GPS-tracking data" (Global Ecology and Biogeography) we use GPS tracking data from 1,498 from 49 different species to evaluate the expert-based habitat suitability data from the International Union for Conservation of Nature (IUCN). Therefore, we used the GPS tracking data to estimate two measures of habitat suitability for each individual animal and habitat type: proportional habitat use (proportion of GPS locations within a habitat type), and selection ratio (habitat use relative to its availability). For each individual we then evaluated whether the GPS-based habitat suitability measures were in agreement with the IUCN data. To that end, we calculated the probability that the ranking of empirical habitat suitability measures was in agreement with IUCN’s classification into suitable, marginal and unsuitable habitat types. Our results showed that IUCN habitat suitability data were in accordance with the GPS data (>95% probability of agreement) for 33 out of 49 species based on proportional habitat use estimates and for 25 out of 49 species based on selection ratios. In addition, 37 and 34 species had a >50% probability of agreement based on proportional habitat use and selection ratios, respectively. These findings indicate that for the majority of species included in this study, it is appropriate to use IUCN habitat suitability data in macroecological studies. Furthermore, our study shows that GPS tracking data can be used to identify and prioritize species and habitat types for re-evaluation of IUCN habitat suitability data. In this dataset we provide the measures of habitat suitability for each individual and each habitat type, calculated using different methods. In addition, we provide data on the body mass and IUCN Red List category of the species, as well as whether the species can be considered a habitat specialist or habitat generalist
    corecore